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ﬁ Outline
Ames Research Cenler

Space Technology Division Thermal Protection Materials & Systems Branch

» Background
€ 2002 NASA Systems Analysis Study
€ Candidate TPS Materials
€ TPS Mass Estimates
€ TPS Performance Uncertainties

» Huygens Support
€ UV Materials Testing
€ Shock Layer Radiation Studies

» Updated Aerocapture Analysis
€ Revised Stagnation Point Heating
® Revised Stagnation Point TPS Requirements

» Summary and Conclusions
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Background

Space Technology Division

» NASA Systems Analysis
Study for Titan aerocapture
mission conducted in 2002

4 Discipline experts from
several NASA centers

» 990 kg orbiter delivered to
Titan
€ Earth Gravity Assist (EGA)

@ Solar Electric Propulsion
(SEP)

€ 5.9 years trip time
¢ V. (inertial) = 6.5 km/s (1000
km)
» Rigid aeroshell
# Flying at angle-of-attack

& Lift vector control via bank
modulation (only)
28 June 2005
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A __ Background - aeroshell configuration

Space Technology Division Thermal Protection Materials & Systems Branch

» 70° half-angle blunt cone; D, ., = 3.75 m
» L/D=0.25
» M/CpA =90 kg/m?
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A . Background - Titan atmosphere

Space Technology Division Thermal Protection Materials & Systems Branch
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Density vs. altitude Methane concentration vs. altitude
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Composition: primarily N, with some Ar and CH,
Uncertainty in argon and methane concentrations — uncertainties in
density distribution

Yelle engineering models adopted for analysis (Justus and Duvall)
¢ TitanGRAM
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Space Technology Division
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» Trajectories (Way, Powell et al.) defined for range of atmospheric
density models

» Lift vector control through bank modulation
» Limiting trajectories: undershoot (lift up) and overshoot (lift down)
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AW Background - stagnation point heating

Space Technology Division

>

>
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Convective heating calculated
with DPLR"and LAURA

Non-equilibrium radiation with
NEQAIR?and RADICAL
Undershoot trajectories —
largest heating rates
Overshoot trajectories —
largest heat loads

Convective heating relatively

insensitive to methane
concentration

Radiative heating proportional
to methane concentration

¢ Due to CN formed in the shock

layer

Thermal Protection Materials & Systems Branch
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1. Wright, M.J., G.V. Candler, and D. Bose, "Data-Parallel Line
Relaxation Method for the Navier-Stokes Equations," AIAA Joumnal,
Vol. 36, No. 9, pp. 1603-1609, Sep. 1998.
2. Whiting, E.E., Park, C., Liu, Y., Amold, J.O., and Paterson, J.A.,
"NEQAIR96, Nonequilibriumand Equilibrium Radiative Transport and
Spectra Program: User's Manual,”" NASA RP-1389, Dec. 1996
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/ Background - stagnation point heat load
Ames Research Center

Space Technology Division Thermal Protection Materials & Systems Branch
Atmosphere model/ Convective Radiative
aerocapture trajectory heat load heat load

(J/lem?) (J/lem?)
Minimum atm / Lift up 5,200 15,769
Nominal atm / Lift up 5,500 10,021
Nominal atm / Lift down 7,500 12,090
Maximum atm / Lift down 7,700 8,393

» Convective heat load larger for overshoot (lift down) trajectories
# Longer flight trajectory

» Radiative heat load varies with methane concentration in the atmosphere

» Radiative heat load (for same atmospheric model) larger for overshoot
(lift down) trajectories

# Longer flight trajectory
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Background - candidate TPS materials

’ Ames Research Center

Space Technology Division Thermal Protection Materials & Systems Branch

28 June 2005

Material Density Description
(g/em’)
Shuttle tiles 0.192-0.352 | Low-density glass-based ceramic tile with glass-based coating
(NASA)
SLA-561V 0.256 Low-density cork silicone composite in Flexcore honeycomb (forebody TPS on
(LMA) Mars Viking, Mars Pathfinder and Mars Exploration Rover landers)
SRAM14 0.224 Low-density cork silicone composite fabricated with strip-collar bonding
(ARA) technique
SRAM17 0.272 Low-density cork silicone composite fabricated with strip-collar bonding
(ARA) technique
SRAM20 0.320 Low-moderate density cork silicone composite fabricated with strip-collar
(ARA) bonding technique
SIRCA 0.192-0.352 | Low-density ceramic tile impregnated with silicone resin
(NASA)
PICA 0.256 Low-density carbon fiberform partially filled with phenolic resin
(NASA) (forebody TPS on Stardust spacecraft)
PhenCarb20 0.320 Low-moderate density phenolic composite fabricated with strip-collar bonding
(ARA) technique
Acusil 0.480 Moderate density filled silicone in Flexcore honeycomb
(ITT)
TUFROC Varies with | Multilayer composite: carbon fiberform/AETB tile with high temperature, high
(NASA) layer sizing | emissivity surface treatment
Genesis Varies with | Carbon-carbon facesheet over carbon fiberform insulator
Concept layer sizing | (forebody TPS on Genesis spacecraft)
(LMA)
Carbon 1.45 Fully dense tape-wrapped or chopped molded heritage material
phenolic (forebody TPS on Galileo and Pioneer Venus entry probes)

3rd International Planetary Probe Workshop

BL-10



A . Background - TPS mass estimates *

Space Technology Division Thermal Protection Materials & Systems Branch
Maximum atmaosphere - Lift Down Nominal atmosphere — Lift Down
Convective Heat Load =7,700 J/cm® | Convective Heat Load =7,500 J/iem?
Radiative Heat Load = 8,393 J/lcm® Radiative Heat Load = 12,090 J/em®
Candidate Thickness Areal weight Thickness Areal weight
TPS Material (cm) (g/cm?) (cm) (g/cm?)
SLA-561V 2.44 0626 243 0622
SRAM 14 1.57 0.353 1.55 0348
SRAM 17 |.93 0526 1 93 0526
SRAM 20 2.04 0.667 2.0d 0.667
PhenCarh-20 2.29 0,696 2.34 0711
TUFROC 4 88 1117 513 | 181
PICA 5.94 | 591 5 82 | 567
Genesis 551 | 298
Catbon phenalic 8.70 13.084 B.76 13167

» Lift down (overshoot) trajectories are worst-case from standpoint of TPS
thickness requirements
» Assumed all materials are opaque for these analyses

» Low density composites provide the lightest TPS solution (unless surface
recession for undershoot trajectories leads to unacceptable shape change)

*Zero margin thicknesses based on nominal stag point heating
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A Background - TPS performance uncertainties
Ames Research Center

Space Technology Division

» CN radiation in a narrow band in
the UV with peak at 3800 A

» Interaction of CN radiation with
low-density, porous TPS
materials was of concern

# Laser studies (80s)
demonstrated degradation in
material performance at shorter
wavelengths (larger absorption
length)

# Potential in-depth absorption =

spallation could significantly
degrade material performance

28 June 2005
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» Due to these uncertainties, a TPS
material known to be opaque at
these wavelengths (TUFROC) was
selected as the baseline forebody
TPS for the systems analysis study
(at a significant mass penalty)
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Space Technology Division Thermal Protection Materials & Systems Branch

» Huygens Delta Flight Acceptance Review
(Cannes, Feb. 2004)

€ NASA Ames offered to test AQ60 (Huygens forebody TPS
material) at UV wavelengths and relevant heat fluxes

e Ames was in-process of acquiring a mercury-xenon lamp for such
purposes under In-Space Propulsion program sponsorship

o ESA accepted the offer and Alcatel/EADS provided samples
e Tests demonstrated that none of the low-density TPS material
candidates absorbed UV radiation below the surface
€ NASA radiative heating predictions for Huygens entry
significantly different than what ESA employed for TPS design
o ESA/NASA collaboration on radiation modeling
e Agreement on the best models in Nov. 2004

® NASA Ames shock tube data (EAST) demonstrated that actual
radiative heating rates much lower than predicted by any of the
models (Jan. 2005)
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Space Technology Division

» Revised stag point heating

€ Considered same trajectories
as 2002 systems analysis
study

€ Minimum density (maximum
CH,) atmosphere only

€ Wright estimated radiative

heating based on EAST
shock tube data

4 Significant uncertainties in
heating still persist

€ Wright recommended adding
30% margin to convective
heating and 200% margin on
radiative heating
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Thermal Protection Materials & Systems Branch
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A Updated aerocapture analysis
Ames Research Center

Space Technology Division

» Revised stag point TPS
requirements

€ Based on UV tests of TPS
materials, low-density
ablators primary candidates

® Re-evaluated TPS thickness
requirements using updated
heating estimates
® Same substructure, initial
conditions, etc.

e Added EADS’ AQ60 and
Norcoat-Liege to material
candidates
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ﬂ Summary and conclusions
Ames Research Center

Space Technology Division Thermal Protection Materials & Systems Branch

» Uncertainties about in-depth absorption of UV radiation resolved
with mercury-xenon lamp tests
€ Low-density ablators viable candidates for Titan aerocapture and/or
entry
» EAST shock tube tests demonstrated that CN radiation in Titan
atmosphere is significantly lower than previous estimates

» TPS requirements for Titan aerocapture re-evaluated using updated
estimates of heating
€ Low density ablators are most attractive candidates but areal weight
requirements only slightly lower than results from 2002 systems
analysis study despite much lower radiative heating rates

e Ablators are more efficient at higher heating rates where ablation consumes
energy

® Use of low-density ablators provides significant mass savings
e 73-98 kg in comparison to baseline TPS in 2002 systems analysis study
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